From Newton to Einstein:
A guided tour through space and time

with Carla Cederbaum
Outline of our tour

1. Sir Isaac Newton
 1643-1727
Why are the planets orbiting the sun?
Newton’s new math

- rate of change/derivative

\[f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \]

- vectors:
velocity, acceleration, force
Newton’s law of gravity

\[\vec{F} = -\frac{mM G \vec{r}}{r^3} \]

- \(m \) = mass of planet
- \(M \) = mass of sun
- \(G \) = gravitational constant
- \(\vec{r} \) = distance planet to sun
How do we measure mass?
Outline of our tour

1. Siméon Denis Poisson 1781-1840
2. Sir Isaac Newton 1643-1727
3. Pierre Simon Laplace 1749-1827
4. Betelgeuse in Orion

Copyright © 2011 Greg Parker and Noël Carboni
Transform Newton’s ideas into math!

Modeling gravitation with mathematics (vector calculus) allows to compute predictions and improve understanding!
Vector calculus

Idea: generalize calculus to 3-dimensional space!

\[f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \]

\[\frac{\partial f}{\partial x}(x_0, y_0, z_0) = \lim_{x \to x_0} \frac{f(x, y_0, z_0) - f(x_0, y_0, z_0)}{x - x_0} \]
Newton’s idea revisited

\[U = \text{Newtonian potential of sun} \]
\[G = \text{gravitational constant} \]
\[\rho = \text{mass density} = \text{mass/volume} \]
\[\Delta = \text{“differential operator”} \]

\[\Delta U = 4\pi G \rho \]
Where is \vec{F}?

$U = \text{Newtonian potential of sun}$

$m = \text{mass of planet}$

$\vec{\nabla} = \text{a differential operator}$

\[
\vec{F} = -m \vec{\nabla} U
\]
What is now mass M?

$M = \text{mass of sun}$

$\vec{n} = \text{normal vector to surface}$
What is now mass M?

Apply mathematical theorems (by Gauß and Stokes)

$$M = \iiint_{\text{sun}} \rho \, dV$$

$$= \ldots$$

$$= \frac{1}{4\pi G} \iint_{\text{surface of sun}} \vec{\nabla}U \cdot \vec{n} \, dS$$
Summary

New math allows to
- write Newton’s ideas as “differential equation”\[\Delta U = 4\pi G \rho \]
- express mass as an integral (using mathematical theorems)

\[
M = \frac{1}{4\pi G} \iiint_{\text{surface of sun}} \vec{\nabla} U \cdot \vec{n} \, dS
\]
Bottom Line

• Use new math to “model” gravitation mathematically.
 – gives better methods for predictions
 – helps understand gravity better
• Newton’s new physics inspired new math!
Outline of our tour

1. Sir Isaac Newton
 1643-1727

2. Pierre Simon Laplace
 1749-1827

3. Siméon Denis Poisson
 1781-1840

4. Carl Friedrich Gauß
 1777-1855

5. Bernhard Riemann
 1826-1866
How can we measure curvature?
How can we measure curvature?

\[\alpha + \beta + \gamma = 180^\circ \]

\[\alpha + \beta + \gamma \neq 180^\circ \]
Curvature is important for:

- Geodesy and Geography
- Astronomy
- Physics
- Engineering (wings of planes,...)
- Biology (surface of cells,...)
- Mathematics

\[\rightarrow \text{differential geometry} \]
Differential Geometry
- studies curves and surfaces
- generalizes vector calculus
- allows rigorous definition of curvature
 (in terms of derivatives)
Curvature

- Curves can be curved.
- Surfaces can be curved.
- 3-dimensional space can also be curved!
- Can even think about higher dimensional (curved) space!!
Outline of our tour

1. Sir Isaac Newton 1643-1727
2. Pierre Simon Laplace 1749-1827
3. Bernhard Riemann 1826-1866
4. Albert Einstein 1879-1955
5. Siméon Denis Poisson 1781-1840
6. Carl Friedrich Gauß 1777-1855

Betelgeuse in Orion
Why are the planets orbiting the sun?

Conflicts with observations and electrodynamics!
General Relativity

gravitation = curvature

Modeling gravitation with mathematics (differential geometry) allows to compute predictions and improve understanding!
Math allows to make predictions like:

- Black holes:

- Expansion of universe:

- Gravitational waves?
Einstein‘s theory

- is called “general relativity”
- uses ideas from differential geometry like curvature
- describes gravitational effects by a differential equation
General relativity

Main equation in “space-time”:

\[\text{Ric} - \frac{1}{2} g R = \frac{8\pi G}{c^4} T \]

c = speed of light
R, Ric: measure curvature
g: measures distance/angles
T: describes matter
Einstein’s theory is consistent with many measurements:
- bending of light
- gravitational red shift
- ...
Applications

- **General Positioning System**
- satellites
- space travel
General relativity in every day life:
General relativity in every day life: matter curves space-time
General relativity in every day life:
General relativity in every day life: curvature influences movement
General relativity in every day life:
Bottom Line

• Again: Use math to model gravitation.
 – gives better methods for predictions
 – helps to better understand gravity
• Gauß/Riemann’s new math allows to predict new physics!
Outline of our tour

1. Sir Isaac Newton 1643-1727
2. Pierre Simon Laplace 1749-1827
3. Carl Friedrich Gauss 1777-1855
4. Bernhard Riemann 1826-1866
5. Albert Einstein 1879-1955

today

Betelgeuse in Orion
Can we forget about Newton?

Naive Idea: Yes!

Einstein’s general relativity is much better
(in predicting observations)
And much more beautiful!

But: also more difficult and less intuitive!
Can we forget about Newton?

Better: Reconcile the theories:
Think of Newton‘s theory
as an approximation to Einstein‘s!

Also:
Try to learn from Newton‘s theory how to
interpret relativistic notions!
Example: What is mass in general relativity?

Negative mass?

Many different definitions

Hawking

At infinity?

ADM

Copyright © 2011 Greg Parker and Noël Carboni
What is a good *local* definition of relativistic mass?

Step 1: differential geometry
+ Newtonian gravity
= new formula for mass

Step 2: use Newtonian limit by → to compare new definition with Newtonian mass
Mass in general relativity

new formula for mass
(analogy to Newtonian formula):

$$M = \frac{1}{4\pi G} \int \int \nabla U \cdot \vec{n} \, dS$$

constructed from geometry of static space-time
Theorem [C. ‘11]

Let

\[m_{ADM}(E^n, g) := \frac{c^2}{16\pi G} \lim_{r \to \infty} \int_{S^{n-1}} \sum_{i=1}^{3} (g_{ii,i} - g_{ij,i}) \nu^j \, d\sigma \]

and

\[m_{PN}(\Sigma) := \frac{1}{4\pi G} \int_{\Sigma} \frac{\partial U}{\partial \nu} \, d\sigma \]

on every okay surface in a static space-time.

Then

\[M = m_{ADM}(E^3, g) = m_{PN}(\Sigma) \]
Step 2: Newtonian limit

Newton’s theory: $c = \infty$
Einstein’s theory: $c = 300.000 \text{km/s}$

Newtonian limit:
\[\text{take } c \text{ to infinity} \]
Theorem 6.4.1 (Newtonian Limit of Mass Theorem). Let $\mathcal{F}(\lambda) := (\mathbb{R} \times \mathbb{E}^3, s^\alpha{}^\beta(\lambda), t_\alpha{}^\beta(\lambda), \Gamma^\nu{}_{\alpha\beta}(\lambda), T^\alpha{}_{\beta}(\lambda), \lambda)$ be a family of static isolated ends in frame theory parametrized by $\lambda \in (0, \varepsilon)$ for some $\varepsilon > 0$ and let $\mathcal{F}(0) := (\mathbb{R} \times \mathbb{E}^3, s^\alpha{}^\beta(0), t_\alpha{}^\beta(0), \Gamma^\nu{}_{\alpha\beta}(0), T^\alpha{}_{\beta}(0), 0)$ be a static isolated system of IIT with global Cartesian coordinates $(x^k(0))$. Assume that there exist global asymptotically flat systems of coordinates $(x^k(\lambda))$ for $\mathcal{F}(\lambda)$ converging to $(x^k(0))$ uniformly on M^3 as $\lambda \to 0$. Let $\gamma_{ij}(\lambda), \gamma_{ij}(\lambda), \gamma_{ij}(0), U(\lambda)$, and $U(0)$ denote the physical and pseudo-Newtonian metrics and potentials of $\mathcal{F}(\lambda)$ and $\mathcal{F}(0)$, respectively. Then

$$m_{\text{ADM}}(g^3(\lambda)) = m_{\text{PNFT}}(\gamma(\lambda), U(\lambda)) \to m_{\text{PNFT}}(\gamma(0), U(0)) = m_N(U(0))$$

as $\lambda \to 0$.

When is relativistic mass approximatively Newtonian mass?

Result: If a star or black hole does not move 0 m/h then its relativistic mass is approximately equal to its Newtonian mass.
How do we find center of mass?

Newton:
What is the center of mass in general relativity?

Many different definitions

Huisken-Yau
Metzger
ADM

All at infinity

Huang
What is a good *local* definition of relativistic center of mass?

Step 1: differential geometry
+ Newtonian gravity
= new formula for center of mass

Step 2: use Newtonian limit by → to compare new definition with Newtonian center of mass
CoM in general relativity

new formula for center of mass
(analogy to Newtonian formula):

\[\bar{z} = \frac{1}{4\pi GM} \int \int_{\text{surface of sun}} \left(\tilde{\nabla} U \cdot \bar{n} \bar{x} - \tilde{\nabla} \bar{x} \cdot \bar{n} U \right) dS \]

\(U, \bar{n}, dS, \tilde{\nabla} \) constructed from geometry of static space-time
Theorem [C. ‘11]

Let

\[z_{ADM}^k(E^3, g) := \frac{c^2}{16\pi m G} \lim_{r \to \infty} \int_{S^2} \left[\sum_{i=1}^{3} x^k (g_{ij,i} - g_{ii,j}) \nu^j - \sum_{i=1}^{3} (g_i^k \nu^j - g_i^j \nu^k) \right] d\sigma \]

and

\[\tilde{z} = \frac{1}{4\pi GM} \int \int_{\text{surface of sun}} \left(\tilde{\nabla} U \cdot \tilde{n} \tilde{x} - \tilde{\nabla} \tilde{x} \cdot \tilde{n} U \right) dS \]

on every okay surface in a static space-time.

Then

\[\tilde{z} = z_{ADM}^k(E^3, g) \]
Theorem 6.4.2 (Newtonian Limit of Center of Mass Theorem). Let $k \in \mathbb{N}$, $k \geq 3$, $\tau > 1/2$ such that $-\tau$ is non-exceptional. Let $\mathcal{F}(\lambda) := (\mathbb{R} \times E^3, s^{a\beta}(\lambda), t_{\alpha\beta}(\lambda), \Gamma_{\alpha\beta}^\mu(\lambda), T^{\alpha\beta}(\lambda), \lambda)$ be a family of (k, τ)-static isolated ends in frame theory parametrized by $\lambda \in (0, \varepsilon)$ for some $\varepsilon > 0$ and let $\mathcal{F}(0) := (\mathbb{R} \times E^3, s^{a\beta}(0), t_{\alpha\beta}(0), \Gamma_{\alpha\beta}^\mu(0), T^{\alpha\beta}(0), 0)$ be a (k, τ)-static isolated system of FT with global Cartesian coordinates $(x^k(0))$. Assume that there exist global wave harmonic (k, τ)-asymptotically flat systems of coordinates $(x^k(\lambda))$ for $\mathcal{F}(\lambda)$ converging to $(x^k(0))$ uniformly on M^3 as $\lambda \to 0$. Let $g_{ij}(\lambda), N(\lambda), \gamma_{ij}(\lambda), \gamma_{ij}(0), U(\lambda)$, and $U(0)$ denote the physical and pseudo-Newtonian metrics and potentials of $\mathcal{F}(\lambda)$ and $\mathcal{F}(0)$, respectively. Finally, assume that $m_{PNFT}(\gamma(\lambda), U(\lambda))$ and $m_{PNFT}(\gamma(0), U(0))$ are non-vanishing. Then

$$
\tilde{\mathcal{Z}}_{ADM}(\gamma(\lambda)) = \tilde{\mathcal{Z}}_{A}(\gamma(\lambda), N(\lambda)) = \tilde{\mathcal{Z}}_{CMC}(\gamma(\lambda)) = \tilde{\mathcal{Z}}_{I}(\gamma(\lambda)) = \tilde{\mathcal{Z}}_{PNFT}(\gamma(\lambda), U(\lambda))
$$

$$
\to \tilde{\mathcal{Z}}_{PNFT}(\gamma(0), U(0)) = \tilde{\mathcal{Z}}_{N}(U(0)) \in \mathbb{R}^3
$$

as $\lambda \to 0$.
When is relativistic center of mass approximatively Newtonian center?

Result: If a star or black hole does not move

\[0 \text{ m/h} \]

then its relativistic center of mass is approximately equal to its Newtonian center of mass.
Step 1: get new formulas of mass and center of mass inspired by Newtonian formulas in differential geometric language

Step 2: use Newtonian limit to compare new definitions with Newtonian concepts: approximate!
What is the Newtonian Limit?

See movie
Credit for pictures:

- www.wikipedia.org
- www.myflyprofile.com
- www2.ed.gov
- www.universe-review.ca
- www.newscientist.com
- www.flickr.com/photos/ak42/2971239293
- www.beyonddieting.com
- www.ugr.es