In many situations, one wants to take limits of minimal surfaces.

For example, for several centuries, the plane and the helicoid were the only known complete, properly embedded minimal surfaces in \mathbb{R}^3 with finite genus and with exactly one end.

Jacob Bernstein and Christine Breiner proved (using work of Colding and Minicozzi) that any such surface (other than a plane) must asymptotic to a helicoid at infinity. Hence such a surface of genus g is called a genus-g helicoid.

But do genus-g helicoids exist for $g \neq 0$?
In 2004 (publ. 2009), Hoffman, Weber, and Wolf proved (using the Weierstrass representation) existence of a genus-1 helicoid:

What about genus > 1?
This year, David Hoffman, Martin Traizet, and I proved existence of genus g helicoids for every g:

![Helicoid Image]

Picture by Traizet 1993 (!).
In our proof, first we construct analogous surfaces in $S^2 \times \mathbb{R}$ (which turns out to be easier!), and then we get examples in \mathbb{R}^3 by letting the radius of S^2 tend to infinity.

Of course we need to know that the surfaces in $S^2 \times \mathbb{R}$ converge smoothly to limit surfaces in \mathbb{R}^3.
In general, it is very useful to have compactness theorems: conditions on a sequence of minimal surfaces that guarantee existence of a smoothly converging subsequence.
Theorem

Let M_i be a sequence of minimal submanifolds of \mathbb{R}^N (or of a Riemannian manifold) such that second fundamental forms are uniformly bounded. Then (locally) there exist smoothly converging subsequences.

In particular, if $p_i \in M_i$ is a sequence bounded in \mathbb{R}^N and if $\text{dist}(p_i, \partial M_i) \geq R > 0$, then (after passing to a subsequence),

$$M_i \cap B(p_i, \partial M_i)$$

converges smoothly to a limit minimal surface M^*.

Here dist is intrinsic distance in M_i, and $B(p_i, r)$ is the geodesic ball of radius r in M_i.

Note: B is the open ball.
The Extrinsic Version

The theorem (if interpreted properly) is also true when dist is exterior distance and $\mathbf{B}(p, r)$ is the extrinsic ball.

In this case the conclusion is that there is an r with $0 < r < R$ such that the connected component of $M_i \cap \mathbf{B}(p_i, r)$ containing p_i converges smoothly (after passing to a subsequence) to a limit surface M^\ast.
Let us assume that the principle curvatures are bounded by 1, and that $\text{dist}(p_i, \partial M_i) \geq \pi/2$.

We can assume the p_i converge to a limit p and that $\text{Tan}(M_i, p_i)$ converge to a limit plane. Indeed, in \mathbb{R}^n, we can assume by translating and rotating that $p_i \equiv 0$ and that $\text{Tan}(M_i, p_i)$ is the horizontal plane through 0.

For each i, let S_i be the connected component of

$$M_i \cap (B^m(0, 1/2) \times \mathbb{R}^{N-m})$$

containing 0.

The hypotheses imply that S_i is the graph of a function

$$F_i : B^m(0, 1/2) \rightarrow \mathbb{R}^{N-m}$$

where the C^2 norm of the F_i is uniformly bounded.
Hence by Arzela-Ascoli, we may assume (by passing to a subsequence) that the F_i converge in $C^{1,\alpha}$ to a limit function F.

So far we have not used minimality.

Since the surfaces M_i are minimal, the F_i are solutions to an elliptic partial differential equation (the minimal surface equation).

According the theory of such equations, convergence in $C^{1,\alpha}$ on $B^m(0, \frac{1}{2})$ implies convergence in C^k on $B^m(0, \frac{1}{2} - \epsilon)$ (for any k and ϵ).
This theorem indicates the importance of curvature estimates: curvature estimates for a classes of minimal surfaces imply existence of smooth subsequential limits of such surfaces.
Theorem (w1987)

For every \(\lambda < 4\pi \), there is a \(C < \infty \) with the following property. If \(M \subset \mathbb{R}^3 \) is an orientable minimal surface with total curvature \(\leq \lambda \), then

\[
|A(p)| \ dist_M(p, \partial M) \leq C.
\]

The theorem is false for \(\lambda = 4\pi \), since the catenoid has total curvature \(4\pi \) and is not flat.

(Cf. Choi-Schoen 1985)
Proof: It suffices to prove it when M is a smooth, compact manifold with boundary.

(A general surface can be exhausted by such M.)

Suppose the theorem is false. Then there is a sequence $p_i \in M_i$ of examples with

$$TC(M_i) \leq \lambda$$

and

$$|A_i(p_i)| \text{ dist}(p_i, \partial M_i) \to \infty.$$

We may assume that each p_i has been chosen in M_i to maximize the left side of $(*)$.

By translating and scaling, we may assume that $p_i = 0$ and that $|A_i(p_i)| = 1$, and therefore that $\text{dist}(0, \partial M_i) \to \infty$.
We may also replace M_i by the geodesic ball of radius $R_i := \text{dist}(0, \partial M_i)$ about 0.

We have:

$$|A_i(0)| \equiv 1,$$

$$R_i = \text{dist}(0, \partial M_i) \to \infty,$$

and

$$|A_i(x)| \text{ dist}(x, \partial M_i) \leq \text{dist}(0, \partial M_i).$$

Now $\text{dist}(0, x) + \text{dist}(x, \partial M_i) = \text{dist}(0, \partial M_i) = R_i$, so

$$|A_i(x)| \leq \frac{R_i}{\text{dist}(x, \partial M_i)} = \frac{R_i}{R_i - \text{dist}(0, x)} \leq \frac{R_i}{R_i - r}$$

if $\text{dist}(x, \partial M_i) \leq r$.
We have shown for each r that

$$\sup_{\text{dist}(x,0) \leq r} |A_i(x)| \leq \frac{R_i}{R_i - r} \to 1.$$

Hence the M_i converge smoothly (first compactness theorem) to a complete minimal surface M with $|A_M(0)| = 1$.

Thus by the corollary to Osserman’s Theorem, $TC(M) \geq 4\pi$.

However,

$$TC(M) \leq \liminf_i TC(M_i) \leq \lambda < 4\pi. \quad \square$$
1. The theorem is also true (with the same proof) in \mathbb{R}^n, but with 4π replaced by 2π. (This is because Osserman’s theorem is also true in \mathbb{R}^n, but with 4π replaced by 2π.)

2. The same proof gives a version of theorem for minimal surfaces in Riemannian manifolds. (Note that if the curvature of M_i at p_i is blowing up, then we dilate to make it 1, which makes the ambient manifold flatter and flatter. Thus in the limit we get a minimal surface in Euclidean space.)
Recall that we have proved:

1. A complete, nonflat minimal surface in \mathbb{R}^3 has total curvature $\geq 4\pi$.

2. For any minimal $M \subset \mathbb{R}^3$ with $TC(M) \leq \lambda < 4\pi$,

$$|A(p)| \operatorname{dist}_M(p, \partial M) \leq C\lambda.$$

We deduced 2 from 1. But conversely, 2 implies 1: if the M in 2 is complete, then $\operatorname{dist}(p, \partial M) = \infty$, so $|A(p)| = 0$. Thus 1 and 2 may be regarded as global and local versions of the same fact.
The equivalence of statements 1 and 2 is an example of general principle: any “Bernstein-type” theorem (i.e., a theorem asserting that certain complete minimal surfaces must be flat) should be equivalent to a local curvature estimate.
Example: the easy version of Allard’s Regularity Theorem

*
1. Global theorem: If \(M \subset \mathbb{R}^n \) is a proper minimal submanifold without boundary and if \(\Theta(M) \leq 1 \), then \(M \) is a plane.

2. Local estimate: there exist \(\lambda > 1, \epsilon > 0, \) and \(C < \infty \) with the following property. If \(M \subset \mathbb{R}^N \) is minimal, \(\text{dist}(p, \partial M) \geq R \), and \(\Theta(M, p, R) \leq \lambda \), then

\[
\sup_{x \in B(p, \epsilon R)} |A(q)| R \leq C.
\]

(Also true in Riemannian manifolds.)

Clearly \(2 \implies 1 \), and proof that \(1 \implies 2 \) is very similar to the proof of the \(TC(M) < 4\pi \) curvature estimate.
Allard’s theorem is much more powerful because he does not assume that M is smooth: it can be any minimal variety (“stationary integral varifold”). He concludes that $M \cap B(p, \varepsilon R)$ is smooth (with estimates).
Concentration Theorem (w1987)

Suppose that $M_i \in \Omega \subset \mathbb{R}^n$ are 2-dimensional minimal surfaces, that $\partial M_i \subset \partial \Omega$, and that $TC(M_i) \leq \Lambda < \infty$.

Then (after passing to a subsequence) there is a set $S \subset \Omega$ of at most $\frac{\Lambda}{2\pi}$ points such that M_i converges smoothly in $\Omega \setminus S$ to a limit minimal surface M.

Now suppose $\Omega \subset \mathbb{R}^3$. Then $|S| \leq \frac{\Lambda}{4\pi}$. Also, if the M_i are embedded, then $M \cup S$ is a smooth embedded surface (with multiplicity.)

The theorem remains true (with essentially the same proof) in Riemannian manifolds.
Let M_n be obtained by dilating the catenoid by $1/n$. Then M_n converges to the plane (with multiplicity 2), and the convergence is smooth except at the origin.
Yes:

Suppose the M_i all have the same finite topological type.

Suppose also that the boundary curves ∂M_i are reasonably well-behaved:

$$\sup_i \int_{\partial M_i} |\kappa_{\partial M_i}| \, ds < \infty.$$

Then we get $\sup_i TC(M_i) < \infty$ by Gauss-Bonnet.
Proof of the concentration theorem in \mathbb{R}^3: Define measures μ_i on Ω by

$$\mu_i(U) = TC(M_i \cap U).$$

By passing to a subsequence, we can assume that the μ_i converge weakly to a limit measure μ with $\mu(\Omega) \leq \Lambda$.

Let S be the set of points p such that $\mu\{p\} \geq 4\pi$. Then $|S| \leq \frac{\Lambda}{4\pi}$.

Suppose $x \in \Omega \setminus S$. Then $\mu\{x\} < \lambda < 4\pi$ for some λ. Thus there is a closed ball $B = B(x, r) \subset \Omega$ with $\mu(B) < \lambda$. Hence

$$TC(M_i \cap B) = \mu_i(B) < \lambda$$

for all sufficiently large i.

But then $|A_i(\cdot)|$ is uniformly bounded on $B(x, r/2)$.

Summary: $|A_i(\cdot)|$ is locally uniformly bounded in $\Omega \setminus S$. Therefore we get the subsequential convergence.

(I don’t have time to prove the other assertions of the theorem.)
Suppose that $M_i \subset \Omega \subset \text{a Riemannian manifold}$ are minimal surfaces and that $\partial M_i \subset \partial \Omega$. Suppose also that

$$\sup_i \text{genus}(M_i) < \infty$$

and that

$$\sup_i \text{area}(M_i \cap U) < \infty \quad \text{for } U \subset \subset \Omega.$$

Then

$$\sup_i TC(M_i \cap U) < \infty \quad \text{for } U \subset \subset \Omega.$$

Thus under the hypotheses of this theorem, we get the conclusion of the concentration theorem: smooth converge (after passing to a subsequence) away from a discrete set S.

Theorem
Let M be a compact minimal submanifold of a Riemannian manifold. We say that M is **stable** provided

$$
\left(\frac{d}{dt} \right)^2_{t=0} \text{area}(\phi_t M) \geq 0
$$

for all deformations ϕ_t with $\phi_0(x) \equiv x$ and $\phi_t(y) \equiv y$ for $y \in \partial M$.

For M noncompact, we say that M is stable provided each compact portion of M is stable.
If $M \subset \mathbb{R}^N$ is an oriented minimal hypersurface and if $X(x) = \left(\frac{d}{dt} \right)_{t=0} \phi_t(x)$ is a normal vectorfield, we can write $X = u\nu$ where $u : M \to \mathbb{R}$ and ν is the unit normal vectorfield.

Suppose also that $u \equiv 0$ on ∂M. Then

$$\left(\frac{d}{dt} \right)^2_{t=0} \text{area}(\phi_t M) = \frac{1}{2} \int_M (|\nabla u|^2 - |A|^2 u^2) \, dS$$

$$= \frac{1}{2} \int_M (-\Delta u - |A|^2 u)u \, dS.$$

Proof: $\left(\frac{d}{dt} \right)^2 \text{area}(\phi_t M) = \int (\frac{d}{dt})^2 J_m(D\phi_t) \, dS = \ldots.$
1. A complete, stable, orientable minimal surface in \mathbb{R}^3 is a plane.

2. If M is a stable, orientable minimal surface in \mathbb{R}^3, then

$$|A(p)| \ \text{dist}(p, \partial M) \leq C$$

for some $C < \infty$.

As usual, 1 and 2 are equivalent.

Also, a version of 2 holds in Riemannian 3 manifolds.
Lemma

Let M be a complete, simply connected surface with $K \leq 0$. Let $A(r) = A_p(r)$ be the area of the geodesic ball B_r of radius r about some point p. Let

$$\theta(M) = \lim_{r \to \infty} \frac{A(r)}{\pi r^2}.$$

Then

$$\theta(M) = 1 - \frac{1}{2\pi} \int_M K \, dS = 1 + \frac{TC(M)}{2\pi}.$$

Corollary

If M (as above) is a minimal surface in \mathbb{R}^3 and $\theta(M) < 3$, then $TC(M) < 4\pi$, and therefore M is a plane.
Proof of lemma: Let \(L(r) \) be the length of \(\partial B_r \). Then \(A' = L \), so

\[
A'' = L' = \int_{\partial B_r} k \, ds = 2\pi - \int_{B_r} K \, dS.
\]

Thus

\[
\lim_{r \to \infty} A''(r) = 2\pi - \int_M K \, dS = 2\pi + TC(M).
\]

The result follows easily. \(\square \)
Proof of the stability theorem for complete, simply connected M: Suppose M is not a plane. Then by the preceding corollary, $\theta(M) > 3$. Thus $\frac{A(r)}{\pi r^3} > 3$ for large r.

But in the problem session you will prove that if $\frac{A(r)}{\pi r^2} > \frac{4}{3}$, then B_r is unstable. (This fact is due to Pogorelov.)
The result for non-simply connected M follows, because for oriented minimal hypersurfaces M, stability of M is equivalent to stability of the universal cover. (Fischer-Colbrie/Schoen and Do Carmo/Peng.)